Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance.
نویسندگان
چکیده
The integrity of white matter, as measured in vivo with diffusion tensor imaging (DTI), is disrupted in normal aging. A current consensus is that in adults advancing age affects anterior brain regions disproportionately more than posterior regions; however, the mainstay of studies supporting this anterior-posterior gradient is based primarily on measures of the corpus callosum. Using our quantitative fiber tracking approach, we assessed fiber tract integrity of samples of major white matter cortical, subcortical, interhemispheric, and cerebellar systems (11 bilateral and 2 callosal) on DTI data collected at 1.5T magnet strength. Participants were 55 men (age 20-78 years) and 65 women (age 28-81 years), deemed healthy and cognitively intact following interview and behavioral testing. Fiber integrity was measured as orientational diffusion coherence (fractional anisotropy, FA) and magnitude of diffusion, which was quantified separately for longitudinal diffusivity (lambdaL), an index of axonal length or number, and transverse diffusivity (lambdaT), an index of myelin integrity. Aging effects were more evident in diffusivity than FA measures. Men and women, examined separately, showed similar age-related increases in longitudinal and transverse diffusivity in fibers of the internal and external capsules bilaterally and the fornix. FA was lower and diffusivity higher in anterior than posterior fibers of regional paired comparisons (genu versus splenium and frontal versus occipital forceps). Diffusivity with older age was generally greater or FA lower in the superior than inferior fiber systems (longitudinal fasciculi, cingulate bundles), with little to no evidence for age-related degradation in pontine or cerebellar systems. The most striking sex difference emerged for the corpus callosum, for which men showed significant decline in FA and increase in longitudinal and transverse diffusivity in the genu but not splenium. By contrast, in women the age effect was present in both callosal regions, albeit modestly more so in the genu than splenium. Functional meaningfulness of these age-related differences was supported by significant correlations between DTI signs of white matter degradation and poorer performance on cognitive or motor tests. This survey of multiple fiber systems throughout the brain revealed a differential pattern of age's effect on regional FA and diffusivity and suggests mechanisms of functional degradation, attributed at least in part to compromised fiber microstructure affecting myelin and axonal morphology.
منابع مشابه
Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking.
The corpus callosum, the principal white matter structure enabling interhemispheric information transfer, is heterogeneous in its microstructural composition, heterotopic in its anteroposterior cortical connectivity, and differentially susceptible to aging. In vivo characterization of callosal features is possible with diffusion tensor imaging (DTI), a magnetic resonance imaging method sensitiv...
متن کاملProblem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: A quantitative fiber tracking study
Normal aging is accompanied by decline in selective cognitive and motor functions. A concurrent decline in regional white matter integrity, detectable with diffusion tensor imaging (DTI), potentially contributes to waning function. DTI analysis of white matter loci indicates an anterior-to-posterior gradient distribution of declining fractional anisotropy (FA) and increasing diffusivity with ag...
متن کاملPossible retrogenesis observed with fiber tracking: an anteroposterior pattern of white matter disintegrity in normal aging and Alzheimer's disease.
Retrogenesis refers to the phenomenon by which degenerative processes in aging reverse the sequence of acquisition in development. Although there has been some evidence for brain retrogenesis in abnormal aging, e.g., Alzheimer's disease (AD), it has not been explicitly addressed in the normal aging. Using diffusion tensor imaging and tractography, we explored the effects of normal and abnormal ...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملLongitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking.
We present a review of neuroimaging studies of normal adult aging conducted with diffusion tensor imaging (DTI) and data from one of the first longitudinal studies using DTI to study normal aging. To date, virtually all DTI studies of normal adult aging have been cross-sectional and have identified several patterns of white matter microstructural sparing and compromise that differentiate region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of aging
دوره 31 3 شماره
صفحات -
تاریخ انتشار 2010